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 Lecture 11.  Direct estimation method of quality of regulation.  

Root estimation method of quality of regulation 

 

11.1  Direct estimation method of quality of regulation 

 

Let us consider a system described by a set of linear differential equations 

with constant coefficients, and let the unit step function be applied on the system 

input:    
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Initial conditions are zero. The system response in this case will be the 

transient function  h(t). 

Transients that occur in systems under action of step disturbances are usually 

classified into 3 groups: a) monotonous, b) aperiodic and c) oscillating (examples are 

given in fig. 4.4). 

We will consider the general case of a transient process (fig. 4.5) and a 

transient process with deviations  (fig. 4.6)  

There is a group of direct quality indices which deal with the transient curve. 

Namely: regulation time, overshoot, number of oscillations, damping factor, steady 

displacement (that determines steady-state accuracy of the system). 

 

 

 
 

            Fig. 4.4. Different transient types          Fig. 4.5. General view of a transient 

                                                                                                 oscillating process 

 
 

Fig. 4.6. Deviation transient of the oscillating process 
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Consider all of them in more details: 

1) Regulation time tP,  characterizes operation speed of a system; it is the 

minimal time that is required to obtain output coordinate sufficiently close to the 

target value with the needed precision: 

 

                              stabhth )( ,                                           (4.3) 

 

where   is predefined and means allowable error (in practice it is usually set equal to 

5% of steady-state value hstab). 

Condition (4.3) is required to compute regulation time by using the formula  

dtkt p  , 

where “dt” is the sampling interval of a continuous signal, k is the number of 

intervals. 

2) Overshoot   is the maximal allowable relative deflection of transient 

characteristic from the steady-state value of the output coordinate, measured in 

percents or relative units: 

                        %100*1max

stab

stab

h

hh 
                                                (4.4) 

 

If a characteristic is the deflection one, we will have: 
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where )0(e . 

It is common to use 10-30% as the allowable overshoot value, but larger 

values can be met, for instance 70%. Nevertheless, there exist object that do not 

tolerate overshoot at all, that is  = 0. 

3) Number of oscillations )(th that transient make during regulation time tР.  

Often in ACS number of oscillations is allowed be m = 1  2, less frequently 

m = 3  4. Again, some systems do not permit oscillations at all. 

4) Damping factor   is equal to the ratio between absolute values of two 

adjacent overshoots, that is:  
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where )0(e . 

5) Steady displacement is computed in the following manner: 
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where  htarg   is the desired value. It determines steady-state precision of a system. 
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All aforementioned terms are not the only possible and their list can be easily 

extended to include some other, more specific ones; the exact indices to use are 

determined by the system under consideration and the task to fulfill. 

 

11.2  Root method of quality estimation 

 

As it was shown previously, roots of characteristic equation determine system 

transient behavior. Hence, it is possible to produce constraints on stability margin and 

operation speed of a system by dealing with these roots, not with the transient itself. 

Let a characteristic equation of a system be of the following form: 
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Geometric mean of the root 0 by definition is 
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Speed of the transient flow can be measured by this value; hence it can be 

used to estimate the system speed of operation. According to (4.7) to increase the 

value 0  we need to increase the value of free term na . In static systems the free term 

is equal to )1( 0Kan  , in astatic is equal 0Kan  , where 0K  is the overall gain 

factor.  

    Consequently, an increase of the speed of transient process can be realized 

by increasing of the coefficient, which is equal to i

n

i
kПK
1

0


 , where ik  are link gain 

factors.  

At the same time we need to keep in mind stability of the system, i.e.  if the 

condition  K0 < Kcr  is satisfied. Here  Kcr  is a boundary increasing factor (critical). 

There exists one useful notion that allows estimating speed of operation, 

namely degree of stability  η.  

It is defined as the absolute value of real part of the root closest to the 

imaginary axis: minRe s
  (fig. 4.7). 
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Fig. 4.7. Illustration of degree of stability concept 

 

This value  η  determines decay speed of transient process, since it ends up 

when the term defined by the abovementioned root (closest to the imaginary axis) 

have decayed.  

From this we can approximate dependence between the degree of stability 

and the transient time: 
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  and is usually predefined. 

Several cases are possible: 

 

The first case:  The closest root is real, that is s = – .  

In this case two roots have to be considered, smin and s1; (fig. 4.8a), then 

min

1

s
T  , here  “T”  is the time constant, and 

1

1

s
 , where τ is the time required to 

reach settled initial conditions. In this case transient process time is TtP )43(   (fig. 

4.8b).  

 

 

 
 

 

 

 

Fig. 4.8а. A real root 

 

  

 

Fig. 4.8b. The transient process 

 

The second case: The closest roots are conjugate, that is, s1,2 = –   j, 

impacts on transient of both these roots are equal. The transient time is 
min

1


Pt  (fig. 

4.9a.  and  4.9b). 

 

 

 

 

 

 

Fig. 4.9a.  Conjugate roots Fig. 4.9b. The corresponding transient 

 

Now it is the best time to explore the degree of stability notion more deeply. 

It was introduced by russian scientists Y. Z. Tzipkin (Я.З. Цыпкин) and P. W. 

Bromberg (Р.В. Бромберг). Its important feature is there is no need to calculate 

characteristic roots in order to find its value. Another approach is applicable, when 
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we introduce new variable  sz  and substitute into (*)  sz  thus obtaining 

mixed equation: 
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After opening the brackets and grouping similar terms together we obtain the 

next equation (with left shift by the value η): 
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where ...3

3

2

21    nnnnn aaaaA  (here  signs are  alternating in series).  

Next, to compute the value of degree of stability it is sufficient to apply any 

stability criterion on equation (4.8) and determine at what values of  η the stability 

threshold occurs. Just to remind: aperiodic threshold occurs when the free term (An in 

this case) is equal to 0; oscillating threshold is signified by zero next to last Hurwitz 

determinant. 

The third case: The closest roots are conjugate, that are  s1,2 = –   j; but the 

second term’s impact is greater than the first’s one.  

Here 


   is the system oscillation (variability) and ,   are real and 

imaginary parts of the root (respectively) in fig. 4.10a. 

 

 

 

 

 

 

 

Fig. 4.10a.  Conjugate roots Fig. 4.10b. Corresponding transient 

 

Oscillation is closely tied to another root characteristic of stability margin, 

namely to decay. Decay during period is equal to 


2
T , where   is an imaginary 

part of the closest root.  

Damping factor is defined as  
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and is measured in percents % (fig. 4.10b). 

As a rule, in ACS decay during period is allowed to be not less that 90-98%. 

Defining particular oscillation applies constraint on roots position in complex 

plane: the region which roots can occupy is restricted by two rays that make with real 

axis angle 
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where  and  are real and imaginary parts of the closed to the axis root of 

characteristic equation.  

Oscillation of a system can also be computed without calculating 

characteristic roots, in the way similar to the one described in the second case. 

Transient is a subject to applied constraints:  

if φmin ≤ φдоп,  then transient function h(t)  is the monotonous one and 

complex roots can be neglected (fig. 4.11a. and 4.11b). 

 

 

 

 

 

 

 

 

Fig. 4.11a. Allowable region for roots Fig. 4.11b.  The transients 

 

In general, usage of characteristic equation roots for quality estimation is not 

complete, since the transient behavior follows not only from left-hand side, but from 

right-hand side of the differential equation as well. By definition, left-hand side 

(transfer function denominator) roots are poles; right-hand side (transfer function 

numerator) roots are noughts. 

If we define fields of poles and noughts placement we can estimate transient 

behavior more complete, for example, zeroes accelerate transient. Noughts effect the 

transient increasing. 

Note: system lag can be decreased in steady state, if we situate noughts 

around poles of the transfer function, starting from the point closest to the imaginary 

axis. 
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